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Abstract 

The role of modelling in predicting the spread of an epidemic is important for health planning and 
policies. This study aimed to apply a dynamic Susceptible-Exposed-Infected-Recovered-Deaths 
(SEIRD) model and simulated it under a range of epidemic conditions using the Python 
programming language. The predictions were based on different scenarios, from without any 
preventive measures to several different preventive measures under R0 of 4. The model shows that 
more weight to personal protection can halt the spread of transmission followed by the closure of 
public places and interprovincial movement restriction. Results after simulating various scenarios 
indicate that disregarding personal protective measures can have devastating effects on the Sri 
Lankan population. The importance of strict adherence, maintain and monitoring of self-preventive 
measures lead to minimizing the death toll from COVID-19. 
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What we already know 
• Compartmental models can be used to project 

scenarios with various disease control measures 

individually or as a useful combination for 

evidence-based policy formulation.  

• Epidemiologists have been using mass action, 

compartmental models, over a hundred years 

which are famous for simplicity in both analysis 

and outcome assessment. 

• Mathematical modelling plays a vital role in the 

highest level of policymaking in the fields of 

health economics, emergency planning, 

monitoring of surveillance data and, risk 

assessment and control. 

What this article adds 

• This paper aimed to describe a dynamic 

Susceptible-Exposed-Infected-Recovered-

Deaths (SEIRD) model and simulate it under a 

range of epidemiological conditions to give an 

insight into COVID-19 spread in Sri Lanka. 

• The SEIRD model produces a time frame for 

preparedness and resource allocation of a country 

without exceeding the surge capacity which may 

lead to a disastrous situation which allows 

authorities to plan potential mortuary capacity 

and understand the burden on crematoria and 

burial services.  

• New policy discussions need to occur whenever 

the best available options such as different 

preventive strategies and knowledge about the 

epidemiology changes.  

• The proposed model can serve as a tool for 

health authorities for planning and policymaking 

to control the pandemic by implementing 

appropriate policy decisions on time to prevent a 

disastrous situation. 

1. Introduction 
 

The coronavirus disease has become a pandemic that 
poses a serious public health risk globally. The virus 
is mutating rapidly and producing many strains which 
is a significant threat to the control measures. The 
alpha strain is a more transmissible variant initially 
detected in the United Kingdom, it has been 
circulating in Sri Lanka as the main variant 1. 
However, the delta variant which has higher 
transmissibility is currently being detected in several 
places from June to August 2021. In this context, an 
in-depth understanding of the current epidemic and 
demand dynamics is fundamental in health planning 
and policymaking, especially when the resources are 
limited. With the purpose of forecasting, different 
prediction models are proposed by various academics 
and groups 2,3. Compartmental models can be used to 
project scenarios with various disease control 
measures individually or as a useful combination for 
evidence-based policy formulation. Furthermore, 
epidemiologists have been using mass action, 
compartmental models, over a hundred years which 
are famous for simplicity in both analysis and 
outcome assessment 4. One scientific way of 
predicting the future directions and trends of an 
epidemic is the development of different 
compartment models 5. The key element in this field 
of research is being able to link mathematical models 
and data. Both epidemiological data and findings of 
mathematical model studies can be compared for 
optimal results and guidance. Mathematical modelling 
plays a vital role in the highest level of policymaking 
in the fields of health economics, emergency 
planning, monitoring of surveillance data and, risk 
assessment and control. The Susceptible-Infectious-
Recovered (SIR) class includes several compartmental 
models. The total population (N) is divided into 
Susceptible (S), Infectious (I), and Recovered 
compartments in the SIR model (R). Based on the 
same principle, the SIR models are expanded by 
adding an Exposed (E) compartment. Every 
individual in the population is assumed to be 
progressing through those four stages, from 
susceptibility to recovery. Although there are some 
limitations in real-life situations, this has been used as 
a basic model for various epidemics 4,5. Importantly, 
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COVID-19 widespread community transmission 
could be a public health nightmare, and Sri Lanka is 
no exception. To ensure an adequate public health 
response to reduce morbidity and mortality in the 
occurrence of widespread community transmission, 
health authorities must be prepared for the worst-case 
scenarios. Therefore, it is quantified using one of the 
simplest SIR compartmental epidemiological models 
available 6. However, death compartment has been 
shown as an important compartment in forecasting, it 
was included in the SEIR model (a derivative of the 
classic SIR model), and the Susceptible-Exposed-
Infected-Recovered-Death (SEIRD) forecasting 
model was developed. Therefore, this paper aims to 
describe a dynamic Susceptible-Exposed-Infected-
Recovered-Deaths (SEIRD) model and simulate it 
under a range of epidemiological conditions to give 
an insight into COVID-19 spread in Sri Lanka. 
2. Methods 
Many compartmental models belong to the basic 
Susceptible-Infectious-Recovered (SIR) class 4,7,8. The 
SIR models are further extended by adding an 
Exposed (E) compartment. We constructed a 
compartmental epidemiological model in the Figure 1 
with vital dynamics describing the number of 
individuals in a fixed population who are susceptible 
to infection (S), exposed (E), infected (I), recovered 
(R), and deaths (D) compartments4,5. 

 
Figure 1: SEIRD Model with Transition Forces 

We extracted publicly available data with permission 
from the official website of the Health Promotion 
Bureau (HPB) and the Epidemiology Unit, Ministry 
of Health, Sri Lanka 9,10 . We used anonymized data 
for this analysis and extracted data relevant to cases 
reported from the 11th of March 2020 to the 5th of 
July 2021. For the development of the prediction 
model, three dynamic variables were considered. The 
first variable was personal measures (the practice of 

social distancing, wearing masks and handwashing) 
which was considered by the way they were adopted 
(100%, 50% and 25%). The second variable was inter-
provincial movement restrictions with 100%, 75% 
and 50% adaptation. The third variable was the 
closure of places (public place, school, workplace) 
with 100%, 50% and 33% adaptation. The weighted 
factors for the three scenarios were 0.70, 0.33, 0.10 
for personal measures, 0.15, 0.33, 0.60 for the 
movement restrictions, and 0.15, 0.33 and 0.30 for the 
closure of places, respectively. The predictions for 
SEIRD were made when the R0 value is 4. Python 
programming language was used for the analysis.  
 
2.1 Model equations  

The flow of individuals through the compartments of 
the model is governed by a set of Ordinary 
Differential Equations (ODE) as given below. 

ds
dt
=
−βIS
N

 

dE
dt
=
βIS
N
− σE 

dI
dt
= σE − γI − µI 

dR
dt
= γI 

dD
dt

= µI 

 
2.2 Disease characteristics and model 

parameters 

 
The available COVID-19 data was used as the disease 
characteristics in this exploration and the model 
parameters were based on the data 5,9,11–16. (Refer 
Table 1).  
 
 
 
 

 

 

 

 

𝜇 
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Table 1. Disease characteristics and model parameters 
 

Parameter  Definition Value Reference  

N Total Estimated Population  21,919,000 10  

S Susceptible 
‘Individuals in the population who do not 
infected, vaccinated or immune’ 

21,919,000–1=21,918,999 
(On day 1) 

Assumed 

 

E Exposed  
‘Individuals exposed but not yet infectious’   

1  
(On day 1) 

Assumed 

I Infected  
‘Individuals able to transmit infection’ 

0  
(On day 1) 

Assumed 

R Recovered  
‘Individuals neither infectious nor able to be 
infected’ 

0  
(On day 1) 

Assumed 

R0 Basic reproduction number  
‘New infections generated by each infectious 
individual in a susceptible population without 
transmission reduction measures’ 

2.53 5  

R0 (a) Basic reproductive number  
(Assumed for prediction) 

4   Assumed 

β Transmission coefficient (Rt.γ) Derived Derived 

γ-1 Infectious period  
‘Time from the onset of infectiousness to 
reversion to non-infectiousness’ 

8.5 days 12 

𝜎 Latent period  
‘Time from exposure to the development of 
infectiousness’ 

3.2 days 13  

n (Cases) Number of confirmed cases  266,499 (by 05-07-2021) 9  

n (Deaths) Total confirmed deaths 3,268 (by 05-07-2021) 9  

µ Case fatality ratio  
‘Proportion of all infections that result in death’ 

1.23% 14, 15 

T (I-D) Time from infection to death  22 days   14, 15 
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3. Results  
The figures below show the predictions of various 
preventive strategies which were based on R0 of 4. 
The X-axis shows the time (in days), and the Y-axis 
shows the population. The number of susceptible 
individuals is shown in blue, recovered in green, 
infective in yellow, exposed in purple and deaths in 
red. 
3.1 Predictions based on the SEIRD model 

without any preventive strategies   
If the R0=4, the peak of the infectious will occurs 
around day 100 with 6.3 million infected individuals. 
Out of all exposed and infected individuals, 10,617 
will die following 150 days after the beginning of the 
epidemic curve if there are no proper strategies to 
prevent the outbreak. 
 
 

 
Figure 2. Predictions based on t he SEIRD 

model R0 = 4 without any preventive strategies 
X axis: Population= e107 

 
3.2 Scenario One 
3.2.1 Predictions of SEIRD with 70% of personal 

protection (social distancing, wearing masks 
and handwashing), 15% of movement 
restrictions and 15% of closure places (public 
place, school, workplace) with R0 of 4 with 
different strategies 

We observed how the SEIRD dynamics are affected 
by different preventive strategies for COVID-19 at a 
specific time in the system’s evolution.  
 
3.2.1.1 With the implementation of 100%, 50% 

and 25% of personal protection 

3.2.1.2 With 100%, 50% and 25% of personal 
protection are implemented at R0 of 4, the 
rate of deaths will be increased from 600 
days, 125 days, 85 days, with 3,409 deaths in 
1200 days (with 0.24 million infected 
individuals), 9,803 deaths in 250 days (with 
3.9 million infected individuals) and 10,373 
deaths in 175 days (with 5.2 million infected 
individuals) will be observed, respectively. 
There is no visible peak observed with 100% 
personal protection. However, the number 
of days to achieve the peak of the infection 
curve will be 160 days with 3 million and 125 
days with 4 million infected individuals at the 
peak of the infection curves with 50% and 
25% personal protection, respectively. [Refer 
Supplementary Figure 1 and Supplementary 
table].  
 

3.2.1.3 With implementation of 100%, 75% and 
50% of movement restrictions 
 

With 100%, 75% and 50% of movement restrictions, 
the rate of deaths will be increased from 85 days, 80 
days, and 75 days with 10,417 deaths in 175 days (with 
5.4 million infected individuals), 10,481 deaths in 160 
days (with 5.6 million infected individuals) and 10,535 
deaths in 150 days (with 5.8 million infected 
individuals) will be observed, respectively. Moreover, 
the number of days to achieve the peak of the 
infection curve will be 120 days, 115 days, and 110 
days, respectively. 
[Refer Supplementary Figure 1 and Supplementary 
table] 
 
3.3 Scenario Two 
3.3.1 Predictions of SEIRD with personal 

protection (social distancing, mask, hand 
washing), movement restrictions and closure 
(public place, school, workplace) with R0 of 
4 with equal weight (33%) for all three 
dynamic variables 

3.3.1.1 With the implementation of 100%, 50% and 
25% of personal protection 
 
With 100%, 50% and 25% of personal protection are 
implemented at R0 of 4, the rate of deaths will be 
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increased from 120 days, 85 days, and 75 days and 
9,897 deaths in 200 days (with 4.1 million infected 
individuals), 10,387 deaths in 175 days (with 5.3 
million infected individuals) and 10,525 deaths in 150 
days (with 5.8 million infected individuals) will be 
observed. Furthermore, the number of days to 
achieve the peak of the infection curve will be 150 
days, 120 days, and 110 days with 4 million, 3.5 
million and 5.8 million infected individuals at the peak 
of the infection curves respectively. 
[Refer Supplementary Figure 2 and Supplementary 
table] 
 
3.3.1.2 With implementation of 100%, 75% and 

50% of movement restrictions 

With 100%, 75% and 50% of movement restrictions 
are implemented at R0 of 4, the rate of deaths will be 
increased from 115 days, 100 days, and 85 days with 
9,663 deaths in 200 days (with 4.1 million infected 
individuals), 10,165 deaths in 200 days (with 4.7 
million infected individuals) and 10,387 deaths in 175 
days (with 5.3 million infected individuals) will be 
observed, respectively. Moreover, the number of days 
to achieve the peak of the infection curve will be 120 
days, 115 days, and 110 days with an infected 
individuals of approximately 4 million, 4.5 million and 
5 million at the peak of the infection curves, 
respectively.  
[Refer Supplementary Figure 2 and Supplementary 
table] 
3.3.1.3 With the implementation of 100%, 50% and 

33% of Closure of Places  

With the 100%, 50% and 33% of closure of places are 
implemented at R0 of 4, the rate of deaths will be 
increased from 120 days, 90 days, and 80 days with 
9,663 deaths in 200 days (with 4.1 million infected 
individuals), 10,387 deaths in 175 days (with 5.3 
million infected individuals) and 10,487 deaths in 150 
days (with 5.7 million infected individuals) will be 
observed. Furthermore, the number of days to 
achieve the peak of the infection curve will be 160 
days, 120 days, and 115 days with an infected 
individuals of 2.5 million, 5 million and 5.5 million at 
the peak of the infection curves, respectively. 
[Refer Supplementary Figure 2 and Supplementary 
table] 

3.4 Scenario Three 
3.4.1 Predictions of SEIRD with 10% of personal 

protection (social distancing, mask, hand 
washing), 60% of movement restrictions and 
30% of closure of places (public place, 
school, workplace) with R0 of 4 

3.4.1.1 With the implementation of 100%, 50% and 
25% of personal protection 
 
With the 100%, 50% and 25% of personal protection 
are implemented at R0 of 4, the rate of deaths will be 
increased from 85 days, 80 days, and 75 days, with 
10,500 deaths in 150 days (with 6.3 million infected 
individuals), 10,565 deaths in 150 days (with 5.7 
million infected individuals) and 10,592 deaths in 150 
days (with 6.1 million infected individuals) will be 
observed, respectively. Furthermore, the number of 
days to achieve the peak of the infection curve will be 
115 days, 110 days, and 105 days with 5 million, 6 
million and 6.5 million infected individuals at the peak 
of the infection curves, respectively.  
[Refer Supplementary Figure 3 and Supplementary 
table] 
 
3.4.1.2 With implementation of 100%, 75% and 50% 
of movement restrictions 
With the 100%, 75% and 50% of movement 
restrictions are implemented at R0 of 4, the rate of 
deaths will be increased from 250 days, 150 days, and 
110 days with 6,950 deaths in 500 days (with 1.3 
million infected individuals), 9,142 deaths in 250 days 
(with 2.96 million infected individuals) and 9,912 
deaths in 200 days (with 4.3 million infected 
individuals) will be observed. Moreover, the number 
of days to achieve the peak of the infection curve will 
be 350 days, 200 days, and 150 days with infected 
individuals of 0.5 million, 2.5 million and 4 million at 
the peak of the infection curves, respectively. 
[Refer Supplementary Figure 3 and Supplementary 
table] 
 
3.3.1.3 With the implementation of 100%, 50% and 
33% of closure of places  
With the 100%, 50% and 33% of closure of places are 
implemented at R0 of 4, the rate of deaths will be 
increased from 110 days, 90 days, and 80 days with 
9,912 deaths in 200 days (with 4.3 million infected 
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individuals), 10,417 deaths in 150 days (with 5.4 
million infected individuals) and 10,502 deaths in 150 
days (with 5.7 million infected individuals) will be 
observed, respectively. Furthermore, the number of 
days to achieve the peak of the infection curve will be 
150 days, 120 days, and 110 days with an infected 
individuals of 4 million, 5 million and 6 million at the 
peak of the infection curves, respectively. 
[Refer Supplementary Figure 3 and Supplementary 
table] 
 
3. Discussion 

As the COVID-19 pandemic progresses, countries 
are increasingly implementing a broad range of 
response activities 17. The present study revealed that 
it will be necessary to layer multiple interventions, 
regardless of whether suppression or mitigation is the 
overarching policy goal. The choice of interventions 
ultimately depends on the relative feasibility of the 
implementation of the different strategies and their 
effectiveness. The compartment models were 
invented during the late 1920s, which are the most 
used models in epidemiology. Moreover, different 
approaches using agent-based simulations are still 
based on compartment models18. The SEIR model is 
very frequently used to explain the COVID-19 
pandemic, which is basic and a reasonably good fit for 
the disease5. Results of our paper after simulating 
various scenarios indicate that disregarding social 
distancing and hygiene measures can have devastating 
effects on the Sri Lankan population. However, that 
model also shows that quarantine of contacts and 
isolation of cases can help halt the spread of novel 
coronavirus 19. The accuracy of the predictions of the 
epidemiological models depends critically on the 
quality of the data feed into the model. If the data 
quality is good, the model can precisely describe the 
situations. A fitting example would be when 
accurately estimating the case fatality rate, which 
requires all cases of the disease and the number of 
dead 4. However, during the COVID-19 pandemic, 
the number of deaths has often been highly inaccurate 
for many reasons, and the number of infected has also 
been incorrect. There can be undiagnosed cases 
during that period because of limited testing, which 
lead to inaccurate reporting 4,20. Furthermore, one of 
the significant limitations of the model is that it does 

not include the natural death and birth rates assuming 
those are constant 4,21. In addition, during the 
COVID-19 pandemic, there are broad variations in 
estimations of Case Fatality Rate (CFR) that may be 
misleading. Countries may be more or less likely to 
detect and report all COVID-19 deaths. Furthermore, 
they may be using different case definitions and 
testing strategies or counting cases differently. 
Variations in CFR also may be explained in part by 
the way time lags are handled. Differing quality of 
care or interventions being introduced at different 
stages of the illness also may play a role. Finally, the 
profile of patients may vary between countries 16.  
The proposed model uses the predictors as given in 
the parameter table under the methodology section. 
The model was internally validated using the 
parameters available in the previous studies in the 
underpinning literature. As with any modelling 
approach, our findings relate to the assumptions and 
inputs of the model which lead to a major limitation. 
The assumptions with the greatest potential effect on 
our findings are the structural assumptions of a 
compartmental epidemiological model 4. 
Furthermore, the predictive capability of the tool is 
highly dependent on several preliminary data for 
parameter estimation. This dependence may lead to 
data misinterpretation, especially considering the SIR 
model. Notably, an essential parameter in epidemic 
modelling is the ‘basic reproduction ratio (R0)’. The 
size of the R0 can be varied since it is determined by 
averaging many cases. Moreover, R0 depends on the 
contagiousness of the pathogen and the number of 
contacts of an infected person19. Furthermore, a study 
has found an R0 of 2.53, implying that the pandemic 
will persist in the human population in the absence of 
strong control measures 5. The parameters, which are 
locally informed, form the basis of predicting and 
forecasting exercises accounting for different 
scenarios and impacts of COVID-19 transmission.  
The internal, and external validation of the model is 
vital for the robust prediction of the ODEs in the 
model. Thus, the models were applied in the series of 
equations to get the equilibrium in the SEIRD model. 
Thereafter, the simulation of the validated model was 
performed to obtain the policy scenarios of the 
proposed model. Initially, the model comprised of 
one exposed individual, and the rest of the population 
was considered as a susceptible population22–24. 
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Therefore, the predictors were handled with care in 
the model to avoid overestimation or 
underestimation. In addition, the infection fatality 
ratio (IFR) of COVID-19 acts as a simple factor in 
the mortality effects of preventive strategies and does 
not alter the presented relative conclusions. There are 
limited serological studies to calculate IFR accurately 
during outbreaks. In such situations, estimates need 
to be made with routinely available surveillance data, 
which generally consist of time series of cases and 
deaths reported in aggregate 16. When the available 
data was considered, the situation was almost like a 
similar study done in China 15. The high mortality rate 
in the COVID-19 pandemic requires that our model 
have a designated compartment for deaths. The 
fatality compartment is the only compartment of the 
model with no further interaction with the rest of the 
epidemic system. Beta, the proportion between the 
rate of infection and the rate of spread (R0) was 
predicted when R0 equals 4. It is found that the peak 
of deaths in Sri Lanka may arrive after five months 
(150 days) following exposure with a maximum 
number of deaths around 10,617 if there are no 
preventive measures during the current wave. With 
high weight to the personal protective measures, the 
occurrence of deaths will be reduced by 68% and 71% 
reduction of the infected cases than without having 
any measures. With high weight to movement 
restrictions, 35.7% of deaths and 83% of the infected 
population will be reduced without having any 
measures. If we give equal consideration for personal 
protection, movement restriction and closure, only 
10.6% of deaths and 36.5% infected population will 
be prevented without having any measures. 
 
4. Conclusion and Recommendation  
In the present work, a computational model for 
predicting the spread of COVID-19 by the dynamic 
SIERD model has been proposed. The dynamic 
model assumes a time-dependent death fraction. 
Various epidemiological parameters such as time of 
peak arrival, number of active cases and number of 
deaths during peak are evaluated for all cases and 
predictions were made against different preventive 
measures. The key conclusion that we emphasized 
from this study is the importance of strict adherence, 
maintenance, and monitoring of the self-preventive 
measures properly to minimize the death toll from 

COVID-19. Policymakers need to streamline the 
resources that are essential for the smooth 
functioning of this strategy. Polices can be guided by 
these results which need to be implemented to lower 
the total population infected, and deaths which will 
lead to flattening of the curves. 
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Supplementary Figure 1. Predictions of SEIRD with 70% of personal protection, 15% of movement 
restrictions and 15% of closure places with Ro of 4 with different strategies 
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Supplementary Figure 2. Predictions of SEIRD with personal protection, movement restrictions and 
closure of places with R0 of 4 with equal weight (33%) for all three dynamic variables 
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Supplementary Figure 3. Predictions of SEIRD with 10% of personal protection, 60% of movement 
restrictions and 30% of closure of places with R0 of 4. 
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Supplementary Table 1. Predictions of SEIRD: Without any measures and with all three strategies 

[personal protection, movement restrictions and closure of places]. 
 

Options Weight Policy Death Days Exposed Infected 

No measures - Without 10617 150 3020859 6252900 

SCENARIO  01 

Options Weight Policy Death Days Exposed Infected 

Personal Measures 0.7 100 3409 1200 89317 236313 
50 9803 250 1670828 3903499 
25 10373 175 2386508 5230010 

Movement 
Restrictions 

0.15 100 10417 175 2474203 5384452 
75 10481 160 2625315 5635264 
50 10535 150 2755947 5845803 

Closure  0.15 100 10417 175 2474203 5384452 
50 10535 150 2755947 5845803 
33 10566 145 2841936 5989039 

SCENARIO 02 
Options Weight Policy Death Days Exposed Infected 
Personal Measures 0.33 100 9897 200 1758096 4072475 

 50 10387 175 2417448 5295067 
 25 10525 150 2732444 5810125 

Movement 
Restrictions 

0.33 100 9897 200 1758096 4072475 
 75 10165 200 2095694 4727986 
 50 10387 175 2417448 5295067 

Closure 0.33 100 9897 200 1758096 4072475 
 50 10387 175 2417448 5295067 
 33 10487 150 2634210 5651165 

SCENARIO 03 
Options Weights Policy Death Days Exposed Infected 
Personal Measures  0.1 100 10500 150 2668474 5706441 

50 10565 150 2838678 5984604 
25 10592 150 2935906 6129321 

Movement 
Restrictions  

0.6 100 6960 425 502580 1293874 
75 9142 250 1216562 2960599 
50 10020 200 1885260 4315111 

Closure 0.3 100 10020 200 1885260 4315111 
50 10421 150 2474203 5384452 
33 10503 150 2673467 5714203 

 
 


